

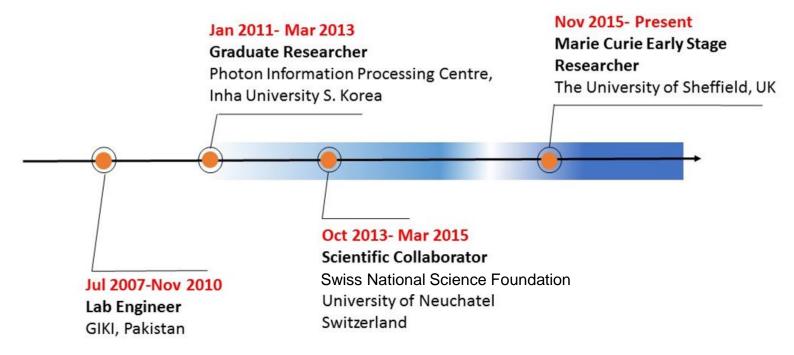
Nanometers Wide Avalanche Regions for Single Photon Counting

Mid Term Review Meeting

ESR: ABDULLAH, Salman

Supervisors: Prof. Chee Hing Tan

Dr. Jo Shien Ng


PROMIS

Postgraduate Research on Dilute Metamorphic Nanostructures and Metamaterials in Semiconductor Photonics

Introduction (Education and training background)

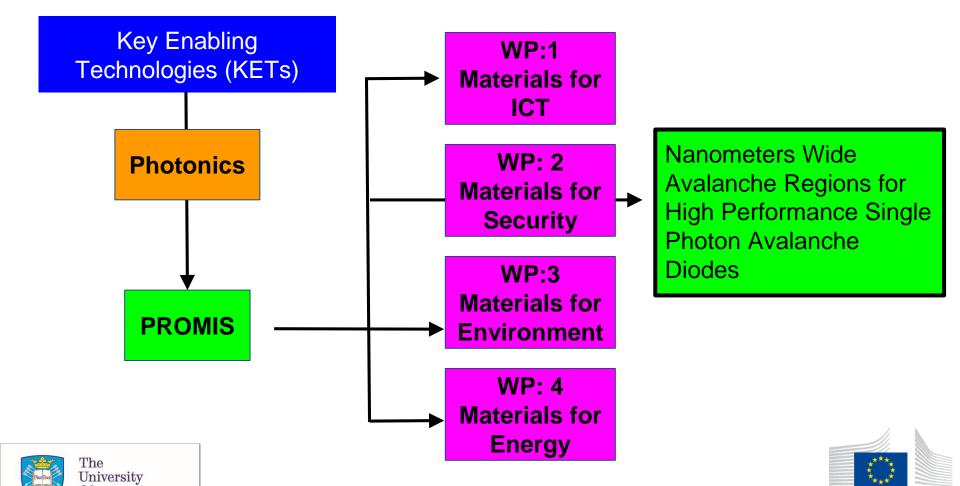
- B.Eng, Lasers and Optoelectronics (GIKI, Pakistan) 2007
- M.Eng, Electrical Engineering (Inha University, Incheon, Korea) 2013

PROMIS

Postgraduate Research on Dilute Metamorphic Nanostructures and Metamaterials in Semiconductor Photonics

Achievements

- Journal articles in Applied Physics Letters (1) and IOP Journal of Physics (1)
- 2nd best poster prize at PROMIS summer school, MBE conference, Montpellier, 2016
- Secured Jungseok Memorial Fellowship for graduate study at Inha University,
 S. Korea for two years (2011-2013)
- Secured 3rd position in Open House and Career Fair, GIKI, 2007



Introduction to the project

Sheffield.

S. Abdullah, PROMIS Midterm review meeting, London, 7-8 Dec, 2016.

Background of the research project

Problem

- Avalanche gain is dependent on temperature
- Photon detection count of APDs is limited by high tunneling

Solution

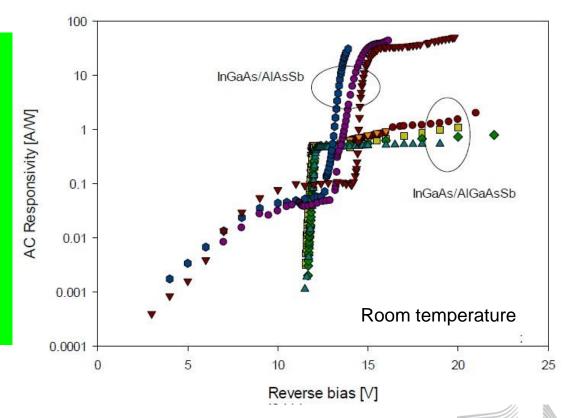
- Use narrow avalanche layers to minimize temperature sensitivity
- Use wide bandgap to reduce tunneling

Objective of the project

Narrow avalanche layers will be used to reduce temperature sensitivity and increase tolerance to high tunneling current

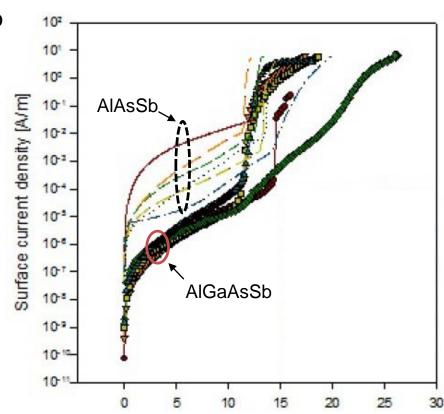
Experimental Techniques used

- UV Photo-lithography and Wet Chemical Etching
 - For device fabrication
- Electrical Characterisation
 - Current Voltage (I-V) measurement, Capacitance Voltage (C-V) measurement, Responsivity measurement
- Sputtering and Thermal Evaporation
 - Deposition of metal contacts and dielectric passivation



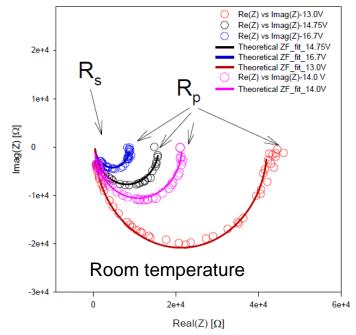
Results and Analysis

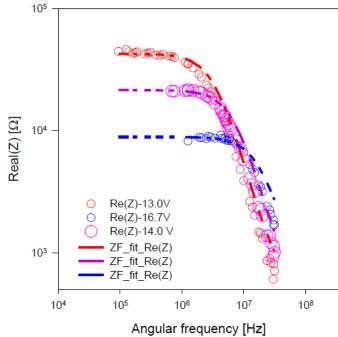
- Responsivity and gain measurement for AlAsSb and AlGaAsSb devices
- AlAsSb devices show higher gain but lower responsivity
- AlGaAsSb devices show higher gain but lower responsivity
- Doping profile still needs optimisation


S. Abdullah, PROMIS Midterm review meeting, London, 7-8 Dec, 2016.

Results and Analysis

- Leakage current studies of AlGaAsSb
- AlGaAsSb shows reduced leakage current compared to AlAsSb
- Surface passivation investigated for AlGaAsSb
- AIN found to be stable passivation and did not degrade the surface leakage





Results and Analysis

Novel multiple frequency CV method for measuring capacitance for leaky devices

Capacitance measurements suggest an imperfect doping profile

Summary

- AlGaAsSb shows reduced surface leakage compared to AlAsSb
- AIN is a stable passivation for AlGaAsSb
- Doping profiles in device layers not optimised

Next step(s)

- Improved growth conditions of APD device layers
- Optimise the design of APD

Skills acquired

- Fabrication of APD devices
- Electrical characterisation of APD devices
- Modeling and simulation for device analysis
- Computational packages for data analysis

Outputs

- Secondment for three weeks at Universidad Autónoma de Madrid, 2016
- Public talk at Universidad Autónoma de Madrid, 2016
- <u>2 conference papers</u>, 19th International Conference on MBE, Montpellier,
 2016
- <u>Student presentation</u> at PROMIS summer school (Cadiz University) and PROMIS workshop (University of Montpellier) 2016

PROMIS

Postgraduate Research on Dilute Metamorphic Nanostructures and Metamaterials in Semiconductor Photonics

Future Aspirations

Priorities for future (1: Highest priority, 2: Second highest.....)

After Ph.D

- 1. Develop photonic detectors technology as a postdoc
- 2. Work in industry developing sensing and detection technologies

Long term goal

Research and development in photonic sensing

